

XU Peiyu

Computer Science, UIUC, IL, US

(+1) 949-826-6598 Email: peiyuxu3@illinois.edu Webpage: xupaya.github.io

EDUCATION

Computer Science, University of Illinois, Urbana-Champaign, US	Sept. 2025 – Present
Ph.D. of Computer Science, Supervisor: Prof. Shuang Zhao	
ICS, University of California, Irvine, US	Sept. 2022 – June. 2025
Department of Computer Science and Technology, HKUST, Hong Kong, China	Aug. 2018 – Sept. 2022
B.Eng. in Computer Science, Supervisor: Prof. Pedro Sander	
Core Courses: Honors Design and Analysis of Algorithms / Advanced Computer Graphics / Advanced Deep Learning Architectures / Combinatorial Analysis / Advanced Numerical Methods for PDE I&II	

WORK EXPERIENCES

Research Scientist Intern Adobe Research , San Jose, US	June. 2025 – Sept. 2025
Advisor: Xin Sun & Iliyan Georgiev; Manager: Kalyan Sunkavalli	
Research Scientist Intern Nvidia Real-time Rendering Research , Redmond, US	June. 2024 – Sept. 2024
Advisor: Benedikt Bitterli & Lifan Wu; Manager: Aaron Lefohn	
Research Assistant UCSD , San Diego, US	June. 2021 – Sept. 2021
Advisor: Tzu-mao Li	

RESEARCH EXPERIENCES

Stochastic Ray Tracing for 3D Gaussian Splatting Ph.D at UIUC / Research Intern at Adobe	June. 2025- Present
Collaborators: Shuang Zhao (UIUC), Xin Sun & Iliyan Georgiev (Adobe)	
➤ Developed the first fully differentiable, sorting-free stochastic ray-tracing framework for 3D Gaussian Splatting, enabling end-to-end reconstruction and relighting without depth sorting.	
➤ Generalized the method to relightable 3DGS , introducing per-Gaussian Monte Carlo shading with exact shadow rays under all typed of emitters, surpassing SOTA baselines in speed, reconstruction accuracy and shadow fidelity.	
➤ Engineered a highly efficient per-ray tiny-state GPU implementation using OptiX any-hit traversal, and in-shader neural material training using CoopVec.	
➤ Achieved performance comparable to rasterization-based 3DGS and 1.5-2× faster training than prior ray-tracing baselines (3DGRT), with superior visual quality on NRHints and MipNeRF-360 benchmarks.	
Robust and Efficient Differentiable Rendering Through Kernel Density Estimation Research Intern at Nvidia	Feb. 2025- May. 2025
Collaborators: Shuang Zhao, UCI; Ravi Ramamoorthi, UCSD; Benedikt Bitterli, NVIDIA; Lifan WU, NVIDIA	
➤ Introduced the first kernel-density-based formulation for boundary path integrals in differentiable rendering.	
➤ Designed an efficient and GPU-friendly algorithm for evaluating visibility-boundary, dramatically reducing variance and improving efficiency for mesh optimizations.	
➤ Achieved state-of-the-art performance on geometry-, lighting-, and material-differentiation tasks, delivering significantly smoother gradients and faster convergence in inverse-rendering pipelines.	
Langevin Monte Carlo Based Sampling of Visibility Boundaries	May. 2023- May. 2024
Collaborators: Shuang Zhao, UCI; Tzu-mao Li,UCSD; Sai Bangaru, NVIDIA/MIT;	
➤ Designed a boundary-aware MCMC sampler that efficiently explores discontinuous visibility manifolds by operating directly in primary sample space.	
➤ Integrated Langevin Monte Carlo updates with adaptive step-size control derived from boundary Jacobians, substantially reducing variance in geometry gradients.	
➤ Proposed a local perturbation scheme for manifold walk on meshes , enabling reliable traversal of highly fragmented visibility boundaries without kd-trees or global guiding structures.	
➤ Published at SIGGRAPH Asia 2024	
Unbiased Path-Space Warped Area Sampling for Differentiable BDPT	June. 2022-May. 2023
Collaborators: Shuang Zhao, UCI; Tzu-mao Li,UCSD; Sai Bangaru, MIT https://shuangz.com/projects/psdr-was-sa23/	
➤ Proposed a general reparameterization of differential path integrals that removes the need for explicit visibility-boundary sampling by applying warped-area reparameterization directly in path space.	

- Designed **divergence-theorem-based interior estimators** that convert boundary integrals into smooth surface integrals using continuous velocity fields constructed from convolved boundary velocities.
- Developed efficient unidirectional and bidirectional Monte Carlo estimators achieving low-variance geometry gradients and stable inverse-rendering performance across complex scenes.
- Received **SIGGRAPH Asia 2023 Best Paper Award**.

Reprojection-based Frame Reuse for Accelerating Real-Time Rendering | Research Assistant

Sept. 2020- Feb. 2021

Collaborators: Pedro Sander, HKUST

- Proposed re-shading scheduling algorithm for reprojection and object-based selective shading.
- Developed an improved algorithm for error estimation with known camera matrix and model motion, and demonstrated the effectiveness when applied on re-shading scheduling.
- Implemented a lightweighted renderer with frame-reprojection support, leveraging **temporal-reuse** for **rasterization-based rendering**.

SELECTED PROJECTS

SPH Fluid Simulator | Project

Sep – Oct. 2020

- Designed and implemented a fluid simulator with complete shading pipeline, written in WebGL. Adopted the Position Based Dynamics algorithm.
- Implemented viscosity and boundary particles, which guarantees fidelity to reality and system stability.

Point Cloud Completion | Project

Sep – Oct. 2020

- Developed a deep learning model for point cloud completion with PyTorch.
- Applied GAN architecture with an encoder-decoder structured generator, and trained the model on a modified dataset.
- Achieved results comparable with baseline with only **0.17x parameters**.

Multi-Person Motion Transfer | Graduation Thesis

Jan – May. 2022.

- Applied **transformer** for **motion transfer** in scenes with multiple people for **video generation**.
- Developed **tracking** algorithm to achieve identity consistency.

AWARDS

Siggraph Asia 2023 Best Paper Awards

SKILLS

- **C++ / Python / Pytorch**
- **GPU Programming: Slang.D / CUDA / OptiX / Vulkan**